
Introduction

Summary

Representational Similarity Analysis
• Contemporary reading models 

propose two word recognition 
processes: decoding from 
orthography to phonology (O à P), 
and whole-word reading from 
orthography to semantics (O à S).1

• Using Representational Similarity 
Analysis (RSA)2,3 to examine fMRI 
activity patterns, we can compare 
participant data with models of O, P, 
and S during word reading.

Research Questions:
1. Where are O, P, and S mappings 

represented in the brain when 
presented with visual words?

2. Using RSA, how do the strength of 
these representations influence 
individual differences in reading skill?

• Spatial patterns of activation across the reading network showed 
significant correlations with semantic model, suggesting that perhaps the 
silent reading task is biased towards employing semantic discrimination

• Next steps: individual difference analyses to determine whether quality of 
representations influence reading skill, develop smaller and more focused 
regions of interest, searchlight analysis within each sub-region of interest, 
make dataset available to the public

Participants (N = 50)
• Age: 29.2 ± 13.6 

(range: 18 – 67)
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Session 1: Behavioural Session
• Demographics & Language 

History Questionnaire
• Word Naming Task: 464 

monosyllabic words 
controlled on sub-lexical 
dimensions
• Standardized Reading 

Measures

Session 2: Neuroimaging 
Session
• Silent Word Reading Task 

(232 words) and Name 
Detection
• Fast jittered event-related 

design

fMRI Beta Weight 
Vectors at ROI

Spearman Rank 
Correlation
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Methods

Regions of Interest

Example Theoretical Models: 
word x word representational dissimilarity matrices

+
DOUGH

+
STEPHSOA = 4.5 – 7.5 sec

6 functional runs

• *p < .05 for one-sample t-test with 
Bonferroni correction

• Selected univariate activated sub-
regions within regions of interest 
and transformed the regions into 
subject space

• Distributed patterns of activation 
along the reading network 
representing semantic information
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Multivariate Results: Similarity to Theoretical Models
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